132 research outputs found

    Enigmatic amphibians in mid-Cretaceous amber were chameleon-like ballistic feeders

    Get PDF
    Albanerpetontids are tiny, enigmatic fossil amphibians with a distinctive suite of characteristics, including scales and specialized jaw and neck joints. Here we describe a new genus and species of albanerpetontid, represented by fully articulated and three-dimensional specimens preserved in amber. These specimens preserve skeletal and soft tissues, including an elongated median hyoid element, the tip of which remains embedded in a distal tongue pad. This arrangement is very similar to the long, rapidly projecting tongue of chameleons. Our results thus suggest that albanerpetontids were sit-and-wait ballistic tongue feeders, extending the record of this specialized feeding mode by around 100 million years

    New material of the ‘microsaur’ Llistrofus from the cave deposits of Richards Spur, Oklahoma and the paleoecology of the Hapsidopareiidae

    Get PDF
    The Hapsidopareiidae is a group of “microsaurs” characterized by a substantial reduction of several elements in the cheek region that results in a prominent, enlarged temporal emargination. The clade comprises two markedly similar taxa from the early Permian of Oklahoma, Hapsidopareion lepton and Llistrofus pricei, which have been suggested to be synonymous by past workers. Llistrofus was previously known solely from the holotype found near Richards Spur, which consists of a dorsoventrally compressed skull in which the internal structures are difficult to characterize. Here, we present data from two new specimens of Llistrofus. This includes data collected through the use of neutron tomography, which revealed important new details of the palate and the neurocranium. Important questions within “Microsauria” related to the evolutionary transformations that likely occurred as part of the acquisition of the highly modified recumbirostran morphology for a fossorial ecology justify detailed reexamination of less well-studied taxa, such as Llistrofus. Although this study eliminates all but one of the previous features that differentiated Llistrofus and Hapsidopareion, the new data and redescription identify new features that justify the maintained separation of the two hapsidopareiids. Llistrofus possesses some of the adaptations for a fossorial lifestyle that have been identified in recumbirostrans but with a lesser degree of modification (e.g., reduced neurocranial ossification and mandibular modification). Incorporating the new data for Llistrofus into an existing phylogenetic matrix maintains the Hapsidopareiidae’s (Llistrofus + Hapsidopareion) position as the sister group to Recumbirostra. Given its phylogenetic position, we contextualize Llistrofus within the broader “microsaur” framework. Specifically, we propose that Llistrofus may have been fossorial but was probably incapable of active burrowing in the fashion of recumbirostrans, which had more consolidated and reinforced skulls. Llistrofus may represent an earlier stage in the step-wise acquisition of the derived recumbirostran morphology and paleoecology, furthering our understanding of the evolutionary history of “microsaurs.

    A good practice guide for ethical and inclusive communications involving small-scale fisheries

    Get PDF
    Today, small-scale fisheries are experiencing substantial climate, economic, and political changes. The power of communications can greatly influence how fisherfolk and small-scale fisheries are central or marginal, enabled or disenabled among these changes. Messages and discourse can shape perspectives on, and images of, small-scale fisheries, leading actors (including those who have power) to hold certain ideas and views on how they should be governed, thereby influencing outcomes. This guide provides practical and simple guidance on how to communicate about small-scale f isheries in an inclusive, responsible and ethical way that respects and recognizes the 120 million women, men and youth employed and engaged in the sector

    A Juvenile Specimen of the Trematopid Acheloma From Richards Spur, Oklahoma and Challenges of Trematopid Ontogeny

    Get PDF
    Trematopids are a clade of terrestrial dissorophoid temnospondyls documented primarily from terrestrial Permo-Carboniferous environments in North America and Europe. Here we describe the complete skull and articulated mandibles of a diminutive trematopid specimen (OMNH 79318) from the Early Permian karst deposits near Richards Spur, Oklahoma. Based on aspects of the neurocranium (e.g., unossified sphenethmoid, prootics, epipterygoids), the specimen represents one of the best examples of a markedly immature trematopid, an important data point for understanding the early ontogeny of trematopids. Specifically, it provides evidence that variation in otic notch structure can be ontogenetically influenced, not only among eucacopine dissorophids but also among trematopids. We provisionally refer the specimen to cf. Acheloma based on the presence of a denticulate vomerine ridge and other qualitative features. However, we emphasize that the taxonomic referral is complicated by several factors that more broadly confound trematopid taxonomy. This includes a low sample size (n = 1) of many taxa and marked size, and presumed ontogenetic, disparity between the known size range of different taxa. Complementary reexamination of both Acheloma cumminsi and Acheloma dunni as part of this study also reveals that the former possesses lateral exposures of palatal bones, the presence/absence of which was the only formal character that previously differentiated the two species, although other qualitative features (e.g., size of the internarial fontanelle) may differentiate these two species. With respect to OMNH 79318, the taxonomic referral is tentative because the specimen also shares many qualitative attributes with Phonerpeton pricei, a trematopid represented only by small-bodied, probably immature individuals. However, many of these shared features are likely to be influenced by ontogeny or size. The subsequent challenges that we encountered in our taxonomic referral suggest that ontogeny may be confounding taxonomy in both diagnoses and phylogenetic analyses of trematopids and emphasize the need for careful study of how this affects our understanding of trematopid intrarelationships

    An earliest Triassic age for Tasmaniolimulus and comments on synchrotron tomography of Gondwanan horseshoe crabs

    Get PDF
    Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids

    A New Captorhinid From the Permian Cave System Near Richards Spur, Oklahoma, and the Taxic Diversity of Captorhinus at This Locality

    Get PDF
    The early Permian cave system in the Dolese Brothers Limestone Quarry near Richards Spur, Oklahoma represents a unique depositional environment that has been interpreted as preserving an upland biota. The quarry and the region around it represent Paleozoic cave systems that underwent periods of flooding not unlike present-day conditions that are commonly associated with monsoonal episodes. The Richards Spur locality is particularly rich in captorhinid eureptiles which represent one of the earliest reptilian clades to have evolved a specialized dentition. Although the multiple-tooth rowed Captorhinus aguti is the most abundant captorhinid at Richards Spur, at least one other species has been described (Captorhinus magnus) and assigned to the same genus, but five other captorhinid taxa have also been found. We describe a new member of the genus Captorhinus (Captorhinus kierani) and explore details of the dental anatomy against the two other members of the genus at Richards Spur, C. aguti and C. magnus, as well as with a member of the genus not presently known from Richards Spur (Captorhinus laticeps). Findings suggest that the nature of the ogival dentition described previously as a synapomorphy uniting C. aguti with C. magnus is not supported and we propose a more informative method for differentiating among dental characters within the clade. The discovery of a new species of Captorhinus provides additional evidence for captorhinid taxic diversity at Richards Spur and is supportive of niche partitioning, which is likely associated with reducing intra-specific competition within the clade. In addition, we argue that the captorhinid fossils at Richards Spur likely includes one additional, currently undescribed multiple-tooth rowed form, that renders the current practice of assigning disarticulated cranial remains, specifically dental fragments, to the species C. aguti problematic. Finally, we offer a method for a comprehensive examination of the dental characteristics, which can then be applied to explore taxic diversity at Richards Spur and examine one of the earliest examples of niche specialization. As a consequence of this research, additional insight into exploring biological interactions between Paleozoic taxa can be examined, with an opportunity to shed light on what might have driven these evolutionary processes

    Unusual morphology in the mid-Cretaceous lizard Oculudentavis

    Get PDF
    Oculudentavis khaungraae was described based on a tiny skull trapped in amber. The slender tapering rostrum with retracted narial openings, large eyes, and short vaulted braincase led to its identification as the smallest avian dinosaur on record, comparable to the smallest living hummingbirds. Despite its bird-like appearance, Oculudentavis showed several features inconsistent with its original phylogenetic placement. Here, we describe a more complete specimen that demonstrates Oculudentavis is actually a bizarre lizard of uncertain position. The new specimen is described as a new species within the genus Oculudentavis. The new interpretation and phylogenetic placement highlight a rare case of convergent evolution in skull proportions but apparently not in morphological characters. Our results re-affirm the importance of Myanmar amber in yielding unusual taxa from a forest ecosystem rarely represented in the fossil record
    • …
    corecore